• 网站首页
  • 国内
  • 国际
  • 原创
  • 社会
  • 财经
  • 体育
  • 法治
  • 科技
  • 资讯
  • 新训练可减少AI系统社会偏见

    发布时间: 2024-06-30 09:16首页:主页 > 国际 > 阅读()


     
    新训练可减少AI系统社会偏见  
     

     

    来自美国俄勒冈州立大学工程学院和Adobe公司的科学家携手,开发出一种用于训练人工智能(AI)的新技术FairDeDup。该技术不仅能降低训练成本,而且有望减少AI系统的社会偏见。研究团队已经在近期于美国西雅图举行的IEEE/CVF计算机视觉和模式识别会议大会上介绍了FairDeDup算法。该会议是由电子电气工程师学会(IEEE)计算机协会和计算机视觉基金会(CVF)共同主办的全球顶级学术会议。

    新训练可减少AI系统社会偏见

    图片来源:物理学家组织网

    FairDeDup是“公平重复数据消除”的缩写,指从用于训练AI系统的数据中删除冗余信息,从而大幅降低训练成本。研究人员表示,之所以将新方法命名为FairDeDup,也是因为它基于此前一种具有成本效益的方法SemDeDup。SemDeDup可以用更少的资源对AI进行训练。但这一过程会强化AI的社会偏见。在最新研究中,他们通过引入公平机制,对SemDeDup进行了改进,FairDeDup因此面世。

    FairDeDup的工作原理是:通过一种名为“修剪”的过程,细化从网络上收集的图像字幕数据集。“修剪”指选择能代表整个数据集的数据子集。该工具可以感知内容,并决定保留或删除哪些数据。结果显示,FairDeDup删除了冗余数据,同时结合了可控的、人为定义的多样性维度,从而减少偏见。

     

    特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。

    特别声明:文章内容仅供参考,不造成任何投资建议。投资者据此操作,风险自担。
    广告
    广告

    网站首页 - 国内 - 国际 - 原创 - 社会 - 财经 - 体育 - 法治 - 科技 - 资讯

    本站不良内容举报联系客服QQ:413458777 官方微信: 服务热线:

    未经本站书面特别授权,请勿转载或建立镜像

    新闻起源和新闻来源 新闻的起源与发展 新闻的起源和本源 新闻的起源和定义 新闻的起源与历史 新闻的起源和本质 新闻活动的起源 简述新闻起源 最早的新闻起源 新闻的起源两种观点